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Improving the performance 
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Machine learning algorithms are being increasingly used in healthcare settings but their 
generalizability between different regions is still unknown. This study aims to identify the strategy 
that maximizes the predictive performance of identifying the risk of death by COVID-19 in different 
regions of a large and unequal country. This is a multicenter cohort study with data collected 
from patients with a positive RT-PCR test for COVID-19 from March to August 2020 (n = 8477) in 
18 hospitals, covering all five Brazilian regions. Of all patients with a positive RT-PCR test during 
the period, 2356 (28%) died. Eight different strategies were used for training and evaluating the 
performance of three popular machine learning algorithms (extreme gradient boosting, lightGBM, 
and catboost). The strategies ranged from only using training data from a single hospital, up to 
aggregating patients by their geographic regions. The predictive performance of the algorithms was 
evaluated by the area under the ROC curve (AUROC) on the test set of each hospital. We found that 
the best overall predictive performances were obtained when using training data from the same 
hospital, which was the winning strategy for 11 (61%) of the 18 participating hospitals. In this study, 
the use of more patient data from other regions slightly decreased predictive performance. However, 
models trained in other hospitals still had acceptable performances and could be a solution while data 
for a specific hospital is being collected.

Around 457 million cases and 6 million deaths have been caused by COVID-19 worldwide by March  20221. 
Nearly 29 million cases and 654 thousand deaths occurred only in Brazil, ranking third in confirmed cases and 
deaths. Several machine learning algorithms have been proposed for predicting COVID-19  diagnosis2–4 and 
 prognosis5–8, with different input data such as image or laboratorial  exams9.

In countries with large socioeconomic inequalities and different access to healthcare and resource 
 heterogeneity10,11, the best strategy for selecting training data for machine learning algorithms is still unknown. 
While more data may improve the ability of machine learning algorithms to identify detailed pathways link-
ing the predictors to the outcome of interest, it may also introduce noise, as new learned pathways may not be 
locally replicable.

Also, collecting a large number of variables may be cost prohibitive for some hospitals, and different data 
collection protocols between hospitals can make this aggregation unfeasible. As the use of machine learning 
algorithms rapidly advances in healthcare, it will be increasingly important to identify how to improve the gen-
eralization of these algorithms in different regions.

In order to identify the best strategy for selecting training data to predict COVID-19 mortality, we gathered 
data from 18 distinct and independent hospitals (with no direct connections, such as having the same admin-
istration or using the same EMR system) from the five regions of Brazil, and tested eight different strategies 
for developing predictive models, starting with only local hospital data and then seven different approaches of 
aggregating external training data.
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Results
Summary population characteristics. Table 1 presents the descriptive statistics regarding the individual 
characteristics of the patients. The sample of the study (8477 patients with COVID-19) was mostly comprised 
by men (55.1%). The most common race was white (62%), although the majority (64.6%) did not provide a 
self-declared race. Average age was 58.4 years and patients stayed 14 days on average. Patients that died during 
hospital stay were older (mean age 66.7 vs. 55.2 for survivors) and were more likely to be males (60.0% vs. 53.3% 
for survivors). List of participants and descritptive statistics for each hospital can be found on Supplementary 
Tables S1 and S2 respectively.

Algorithmic performance. Figure 1 shows the results of the AUROCs for the best of the three algorithms 
for each strategy. Overall, the best predictive performances were obtained when using training data from the 
same hospital, which was the winning strategy for 11 (61%) of the 18 participating hospitals.

Figure 2 presents the AUROCs of the winning strategy for each hospital, separated by regions. For the south-
east region, the most populous region of Brazil and where most of the data was collected, the winning strategy 
for every hospital was training with only local data. Supplementary Figs. S2 and S3 show recall and specificities 
from best strategies.

Table 2 presents a summary of the best algorithm for each strategy. Overall, extreme gradient boosting 
(XGBoost) was the algorithm that presented the highest number of winning predictive performances regarding 
AUROCs (67/144, 46.5%), followed closely by Light GBM with 61 (42.4%) and catboost with 16 (11.1%). The 
list of the final hyperparameters for each algorithm is available in Supplementary Table S3. Calibration for best 
models are presented in Supplementary Table S4.

Table 1.  Descriptive statistics of the demographics characteristics of the sample.

Variable

Death

TotalNo Yes

Mean (SD) Mean (SD) Mean (SD)

Age (years) 55.2(17.0) 66.7(15.1) 58.4(17.3)

SouthEast 57.0(15.8) 66.0(14.3) 60.3(15.9)

NorthEast 52.6(18.3) 71.2(15.3) 54.6(19.0)

Midwest 56.9(15.9) 64.3(16.7) 60.4(16.7)

South 55.2(17.1) 76.2(14.0) 58.0(18.2)

North 54.0(16.1) 68.6(14.4) 56.7(16.8)

Hospital time 13.2(17.3) 16.4(16.5) 14.2(17.1)

SouthEast 16.3(19.4) 16.5(14.8) 16.4(17.8)

NorthEast 6.7(11.2) 14.3(10.9) 8.0(12.0)

Midwest 13.2(13.5) 13.9(18.2) 13.5 (15.9)

South 10.0(13.6) 31.7(35.1) 12.1(18.0)

North 11.1(13.7) 20.2(23.1) 12.8(16.3)

Male 53.3 60.0 55.1

SouthEast 55.7 61.6 57.8

NorthEast 48.3 50.8 48.6

Midwest 55.6 60.1 57.7

South 57.3 57.7 57.3

North 55.4 63.0 56.8

Race—White (%) 68.3 50.6 62.1

SouthEast 63.8 58.9 62.2

NorthEast 65.9 29.0 29.2

Midwest 10.4 30.3 27.5

South 97.4 98.2 97.5

North 13.8 0.1 0.1

Race—Black/Mixed/Asian (%) 31.7 49.5 38.0

SouthEast 36.2 41.1 37.8

NorthEast 70.8 70.9 70.8

Midwest 89.6 69.7 72.5

South 2.6 1.8 2.5

North 86.2 93.8 88.9
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Discussion
We found that the different strategies for training data selection were able to predict COVID-19 mortality with 
good overall performance, using only routinely-collected data, with an AUROC of 0.7 or higher per strategy, 
with few exceptions. The best overall strategy was training and testing using only the reference hospital data, 
achieving the highest predictive performance in 11 of the 18 different hospitals.

In this study, while in some cases adding more data from different hospitals and regions improved predictive 
performance, in most scenarios it decreased the predictive ability of the algorithms. The inclusion of data from 
other hospitals contributed to training data noise possibly due to heterogeneity in hospital  practices12 and in 
most cases deteriorated the predictive performance as seen in other  studies13,14, possibly due to different patient 
demographics, and variable interactions that are not locally  reproductible15. Other studies that included data from 
different hospitals and found high predictive performance may have benefited from using data from connected 
hospitals with similar patients using different techniques or larger  samples16–18. Our study is unique in the sense 
that we analyzed data from 18 independent hospitals from all the five regions of a large and unequal country.

This study has some limitations that need to be acknowledged. First, even though we analyzed hospitals from 
every region of Brazil, they were not equally distributed, with a higher number of patients from the southeast 
and northeast regions, which are also the most populous. Another limitation is that as the 18 hospitals were 
unconnected and independent, there may have been differences on local data collection procedures and sample 
size that influenced the final results. Finally, some hospitals had small samples, but were included for aggregating 
purposes with other regions to check if other strategies improved overall performance.

In conclusion, we found that using only hospital data can yield better predictive results when compared to 
adding data from other regions with different population and socioeconomic characteristics. We found that 
algorithms trained with data from other hospitals frequently decreased local performance even if it considerably 
increased the training data available. However, models trained with data from other hospitals still presented 
acceptable performances, and could be an option while data for a specific hospital is still being collected.

Methods
Data source. A cohort of 16,236 patients from 18 distinct hospitals of all regions of Brazil were followed 
between March and August 2020. The map with the geographic location of participating hospitals is available in 
Supplementary Fig. S1. We filtered only adult patients (> 18 years) with a positive RT-PCR diagnostic exam for 
COVID-19, resulting in 8477 patients. Of these, 2356 (28%) died as a result of complications caused by COVID-
19. The mortality outcome referred to the current hospital admission for COVID-19, independently of the time-
frame. Hospitalization was only analyzed at the time of COVID-19 diagnosis and further hospitalizations of the 
patient were not included in the study. We used as predictors only variables collected in early hospital admission, 
i.e. within 24 h before and 24 h after the RT-PCR exam. The full list of hospitals is available in Supplementary 
Table S1.

A total of 22 predictors were selected among routinely-collected variables in all hospitals, including age, 
sex, heart rate, respiratory rate, systolic pressure, diastolic pressure, mean pressure, temperature, hemoglobin, 

Figure 1.  Best AUROCs according to strategy, region and hospital with the best strategy highlighted.
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platelets, hematocrit, red cells count, mean corpuscular hemoglobin (mch), red cell distribution width (rdw), 
mean corpuscular volume (mcv), leukocytes, neutrophil, lymphocytes, basophils, eosinophils, monocytes and 
C-reactive protein. Figure 3 illustrates the overall process.

The study was approved by the Institutional Review Board (IRB) of the University of São Paulo (CAAE: 
32872920.4.1001.5421), which included a waiver of informed consent. The data and the partnership with all 
members of IACOV-BR are included in this approval. The study followed the guidelines of the Transparent 
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)19.

Figure 2.  AUROCs of the winning strategy per region. (a) Southeast, (b) Northeast, (c) Midwest, (d) South, (e) 
North.

Table 2.  Algorithm with the best predictive performance per strategy.

Strategy

Total1 2 3 4 5 6 7 8

Catboost 6 (33.3%) 1 (5.6%) 1 (5.6%) 0 (0.0%) 1 (5.6%) 2 (11.1%) 2 (11.1%) 3 (16.7%) 16 (11.1%)

LightGBM 5 (27.8%) 12 (66.7%) 11 (61.1%) 10 (55.6%) 8 (44.4%) 4 (22.2%) 7 (38.9%) 4 (22.2%) 61 (42.4%)

XGBoost 7 (38.9%) 5 (27.8%) 6 (33.3%) 8 (44.4%) 9 (50%) 12 (66.7%) 9 (50.0%) 11 (61.1%) 67 (46.5%)

Total 18 18 18 18 18 18 18 18 144
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Machine learning techniques. Three popular machine learning models for structured data  (lightGBM20 
 catboost21, and extreme gradient  boosting22) were trained to predict COVID-19 mortality using routinely-col-
lected data. Eight different strategies were tested to identify the best data selection strategy for each hospital and 
each of the three algorithms.

Strategies and preprocessing techniques. Initially, we used a single hospital data as the baseline strat-
egy, splitting the data in 70% for training and 30% for testing, with the latter used to predict mortality risk. We 
then also tested seven different data aggregation strategies to assess the performance of the algorithms with dif-
ferent training data, as presented in Table 3.

Variables with more than two categories were represented by a set of dummy variables, with one variable for 
each category. Continuous variables were standardized using the z-score. Variables with a correlation greater 
than 0.90 were discarded. Variables with more than 90% missing data were also discarded. Remaining variables 
with missing data were first imputed by the median. We also analyzed the use of the multiple imputation by 
chained equation (MICE)23 technique, but it did not improve the predictive performance of the models (Sup-
plementary Fig. S4). We used K-fold cross-validation with 10 folds with Bayesian optimization (HyperOpt) to 
select the hyperparameters. Random oversampling was performed in the training set to improve class imbalance 
while keeping the test set  intact24.

Figure 3.  Process overview. From inclusion criteria to feature selection.

Table 3.  Clustering strategies for training and testing.

Strategy Description

1. Local training Training with 70% of a single hospital data and testing on the other 30%

2. All hospitals except reference Training using 70% of all hospitals data excluding the reference hospital, and testing 
on 30% of the reference hospital data

3. Same region except reference Training using 70% of all hospitals data in the same geographic region excluding the 
reference hospital, and testing on 30% of the reference hospital data

4. Other regions except reference Training using 70% of all hospitals data in other geographic regions and testing on 
30% of the reference hospital data

5. All hospitals plus reference Training using 70% of all hospitals data and 70% of the reference hospital, and test-
ing on 30% of the reference hospital data

6. Reference plus the all hospitals absolute number Training using 70% of the reference hospital data plus the same absolute number of 
patients of all hospitals, and testing on 30% of the reference hospital data

7. Reference plus the same region absolute number
Training using 70% of the reference hospital data plus the same absolute number 
of patients of hospitals from the same region, and testing on 30% of the reference 
hospital data

8. Reference plus the other regions absolute number
Training using 70% of the reference hospital data plus the same absolute number of 
patients of hospitals from other regions, and testing on 30% of the reference hospital 
data
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To evaluate the performance of the algorithms, we calculated the following metrics for each strategy: accu-
racy, recall (sensitivity), specificity, positive predictive value (PPV or precision), negative predictive value (NPV) 
and F1 score. The area under the receiver operating characteristic curve (AUROC) was the main metric used to 
select the best model among the different scenarios. All the results reported in this study are from the test set. 
Confidence intervals for AUROC curves were estimated using Delong method for computing the covariance 
of unadjusted AUC.

Institutional review board statement. The name of the ethics committee is “Comitê de Ética em Pes-
quisa da Faculdade de Saúde Pública da USP”. All the study protocol was approved by this Committee following 
all methods in accordance with the relevant guidelines and regulations. The approval date of the project was 
June 2020.

Data availability
The data comes from 18 distinct hospitals, and it is not publicly available as it contains information of patients 
in accordance with the Brazilian data protection law (Lei Geral de Proteção de Dados nº 13.709/2018) but are 
available from the corresponding author on reasonable request.

Code availability
All the code written to develop the models can be found on https:// github. com/ labda ps/ iacov_ br_ public.
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